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Theory of high-force DNA stretching and overstretching

C. Storm and P. C. Nelson
Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania 19104

~Received 9 December 2002; published 9 May 2003!

Single-molecule experiments on single- and double-stranded DNA have sparked a renewed interest in the
force versusextension of polymers. The extensible freely jointed chain~FJC! model is frequently invoked to
explain the observed behavior of single-stranded DNA, but this model does not satisfactorily describe recent
high-force stretching data. We instead propose a model~the discrete persistent chain! that borrows features
from both the FJC and the wormlike chain, and show that it resembles the data more closely. We find that most
of the high-force behavior previously attributed to stretch elasticity is really a feature of the corrected entropic
elasticity; the true stretch compliance of single-stranded DNA is several times smaller than that found by
previous authors. Next we elaborate our model to allow coexistence of two conformational states of DNA, each
with its own stretch and bend elastic constants. Our model is computationally simple and gives an excellent fit
through the entire overstretching transition of nicked, double-stranded DNA. The fit gives the first value for the
bend stiffness of the overstretched state. In particular, we find the effective bend stiffness for DNA in this state
to be about 12 nmkBT, a value quite different from either theB-form or single-stranded DNA.

DOI: 10.1103/PhysRevE.67.051906 PACS number~s!: 87.15.2v
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I. INTRODUCTION AND SUMMARY

New single-molecule manipulation techniques ha
opened the mechanical properties of individual macrom
ecules to much more direct study than ever before. For
ample, optical-trap measurements give the force-exten
relation of a single molecule ofl DNA, from which we can
deduce the molecule’s average elastic properties by fittin
a model. Part of the beauty of this procedure is that we p
from an optical-scale measurement~the total end-to-end
length of the DNA is typically over 10mm) to a nanometer-
scale conclusion~the elastic constants of the 2-nm-diame
DNA molecule!. But by the same token, we must be care
with the interpretation of our results. Fitting a physica
inappropriate model to data can give reasonable-looking
but yield values of the fit parameters that are not microsco
cally meaningful.

We will illustrate the above remarks by studying hig
force measurements of the force-extension relation
single-stranded DNA. Previous authors have fit this relat
at low to moderate forces to the extensible freely join
chain~EFJC! model, obtaining as fit parameters a Kuhn se
ment length and an enthalpic stretch modulus. We argue
to capture the microscopic physics, at least one elemen
physical realism must be added to the model, namely a n
zero link stiffness. The resulting model fits the data be
than either the EFJC or the extensible wormlike ch
~EWLC! models, with no additional fit parameters. Includin
the link length as an additional parameter gives a still be
fit, and also yields a much large value of the extension mo
lus than previously reported. The reason for this discrepa
is that high-force effects previously attributed to intrins
stretching of the chain are, in our model, simply a part of
corrected entropic elasticity.

The mathematical formalism we introduce to solve o
model is of some independent interest, being simpler t
some earlier approaches. In particular, it is quite easy to
tend our model to study a linear chain consisting of t
1063-651X/2003/67~5!/051906~12!/$20.00 67 0519
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different, coexisting conformations of the polymer, each w
its own elastic constants. We formulate and solve this mo
as well ~some of these results were announced in Ref.@1#!.
The model makes no assumptions about the elastic prope
of the two states, but rather deduces them by fitting to rec
data on the overstretching transition in nicked, doub
stranded DNA. Besides giving a very good fit to the data,
model yields insight into the character of the stretched c
formation of DNA. The model is flexible and can readily b
adapted to the study of the stretching of polypeptides wit
helix-coil transition.

II. THE WORMLIKE CHAIN AND THE FREELY JOINTED
CHAIN

A. The freely jointed chain

A polymer is a long, linear, single molecule. The chemic
bonds defining the molecule can be more or less flexible
different cases. The simplest model of polymer conformat
treats the molecule as a chain of rigid subunits, joined
perfectly flexible hinges—a ‘‘freely jointed chain,’’ or FJC
@2#. The FJC model is not very appropriate to doub
stranded DNA, consisting of a stack of flat basepairs join
by both covalent bonds and physical interactions~hydrogen
bonds and the hydrophobic base-stacking energy!, but for
single-stranded DNA~ssDNA! it forms an attractive starting
point.

Deviations from the FJC picture can come from a varie
of interactions among the individual monomers: Individu
covalent bonds may have bending energies that are not s
relative tokBT; successive monomers may have steric int
actions; and so on. To some extent, we can compensate
the model’s omission of such interactions by choosing
effective Kuhn segment lengthb that is longer than the actua
monomer size. Since the FJC views the polymer as a ch
of perfectly stiff links, choosing a largerb gives us a chain of
longer links and thus effectively stiffens the chain. Accor
ingly, one viewsb as a fit parameter when deriving the forc
©2003 The American Physical Society06-1
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C. STORM AND P. C. NELSON PHYSICAL REVIEW E67, 051906 ~2003!
extension relation of the model. The fit value ofb can then
depend both on the molecule under study and on its exte
conditions such as salt concentration, as those condition
fect the intramolecular interactions.

To formulate the FJC, we describe a molecular conform
tion by associating with each segment a unit orientation v
tor t̂ i , pointing in the direction of thei th segment, as
sketched in Fig. 1. In the presence of an external forcfW

along theẑ direction, we can define an energy functional f
the chain

E FJC@$ t̂ i%#

kBT
52(

i 51

N
f b

kBT
t̂ i• ẑ. ~1!

In the absence of an external force, all configurations h
equal energy and~neglecting self-avoidance! the chain dis-
plays the characteristics of a random walk. To pull the e
of such a chain away from each other a force has to
applied, as extending the chain reduces its conformatio
entropy. The resulting entropic elastic behavior can be s
marized in theforce-extension relation@3#

K z

L tot
L 5cothS f b

kBTD2
kBT

f b
, ~2!

the well-known Langevin function. In the limit of low
stretching force, all polymer models reduce to the Hooke-
behavior f 5ksp̂ z&; we define the effective spring consta
by k5kspL tot , or

K z

L tot
L→ f

k
1O~ f 2!. ~3!

Expanding Eq.~2! gives the effective spring constant for th
FJC askFJC53kBT/b. The fact that the effective spring con
stant is proportional to the absolute temperature illustra
that the elasticity in this model is purely entropic in natur

At high stretching force, Eq.~2! gives ^z/L tot&→1; the
extension saturates when all the links of the chain are alig
by the external force. In reality, individual links are slight
extensible; we will modify the model to introduce this effe
in Sec. II C.

FIG. 1. The freely jointed chain consists of identical segme
of length b, joined together by free hinges. The configuration

fully described by the collection of orientation vectors$ t̂ i%. $u i%
denotes the angle betweent̂ i and the fixed directionẑ of the applied
stretching force.
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B. The wormlike chain

As mentioned above, double-stranded DNA~dsDNA! is
far from being a freely jointed chain. Thus it is not surprisin
that while the FJC model can reproduce the observed lin
force-extension relation of dsDNA at low stretching forc
and the observed saturation at high force, still it fails at
termediate values off. Another indication that the model i
physically inappropriate is that the best-fit value of the Ku
segment length isb'100 nm, completely different from the
physical contour length per basepair of 0.34 nm.

To improve upon the FJC, we must account for the f
that the monomersdo resist bending. In fact, the very grea
stiffness of double-stranded DNA can be turned to our
vantage, as it implies that successive monomers are
strained to point in nearly the same direction. Thus we c
treat the polymer as a continuum elastic body, its configu
tion described by the positionrW(s) as a function of the
relaxed-state contour lengths ~see Fig. 2!. Continuing to
treat the chain as inextensible gives the wormlike chain@4,5#.
The local tangent and curvature vectors (tW and wW , respec-
tively! are given by

tW~s!5
drW~s!

ds
, wW ~s!5

d tW~s!

ds
. ~4!

We temporarily assume that the chain is inextensible,
pressed locally by the condition thatu tW(s)u51 everywhere.

To get an energy functional generalizing Eq.~1!, we note
that for a thin, homogeneous rod the elastic energy densi
proportional to the square of the local curvature. Adding
external-force term from Eq.~1! yields

E WLC@ t̂~s!#

kBT
5E

0

L tot
dsH A

2
Ud t̂~s!

ds
U2

2
f

kBT
t̂~s!• ẑJ . ~5!

Equation~5! shows that parameterA is a measure of the ben
stiffness of the chain.A is also thepersistence lengthof the
chain, the characteristic length scale associated with the
cay of tangent-tangent correlations at zero stretching for

^ t̂~0!• t̂~s!&WLC;e2usu/A. ~6!

The force-extension relation for the WLC was obtain
numerically in Ref.@6#; subsequently a high-precision inte

s

FIG. 2. A wormlike chain is a continuum elastic medium, who

configuration is described in terms of the position vectorrW as a
function of contour lengths.
6-2
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THEORY OF HIGH-FORCE DNA STRETCHING AND . . . PHYSICAL REVIEW E67, 051906 ~2003!
polation formula was given in Ref.@7#. At low force, the
WLC also behaves such as an ideal spring, with effec
spring constant@8#

kWLC5
3kBT

2A
. ~7!

Thus a WLC with stiffness parameterA yields a force-
extension relation that at low force matches the FJC witb
52A.

The remarks at the start of this section make it clear t
the WLC is just an approximation, valid in the limit wher
the persistence lengthA is much longer than the physica
monomer length~and width!. When these conditions are no
met, the picture of the molecule as a thin, continuous, ela
body will not be accurate; short-length cutoff effects w
then enter in an essential way.

C. Experiments

Early single-molecule stretching experiments showed
double-stranded DNA closely follows the predicted force e
tension of the WLC at forces under 10 pN@9#. Later experi-
ments probing the 10 pN, f ,60 pN region found a linea
deviation from the WLC prediction, attributable to an enth
pic stretching elasticity@10–12#. Adding this effect into the
model introduces a second fit parameterE in addition toA.
To lowest order inf /E this modification just amounts to
multiplying the model’ŝ z/L tot& by the factor (11 f /E); for
dsDNA, the resulting fit is very good out to 60 pN.

The situation for single-stranded DNA has been less cl
Adding an extensibility factor to Eq.~2! again yields a mode
with two parameters (b and E). Though this EFJC mode
yielded impressive fits to the early experimental data, rec
advances in single-molecule manipulation@13,14# have again
probed higher forces, and here the agreement is not so g
As discussed in Sec. III below, the previously cited valu
for b and E do not give a successful extrapolation to t
regime of higher forces. Instead we will propose a model t
borrows features from both the FJC and the WLC to desc
these data more accurately.

III. THE DISCRETE PERSISTENT CHAIN

A. Model

The preceding sections have made it clear that the be
ior of a real polymer will involvebothdiscreteness and ben
stiffness. While we have seen that the corresponding eff
on the force-extension relation are interchangeable at v
low forces, nevertheless, higher forces will distinguish the
Accordingly, we now formulate a model withboth bandA,
or equivalently bothb and the low-force spring constantk
defined in Eq.~3!. ~Later we will add a stretch stiffness a
well.! Of course, adding a new fit parameter to a modelad
hoc will always improve its fit to data. Our attitude is thatb
is not really new: both the WLC and the FJC do contain
but they correspond to unphysical limiting cases, namelyb
→0 andb→3kBT/k, respectively. We will show that instea
taking b to correspond to the physical monomer size of
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DNA, which is intermediate between these extremes, yield
better fit to the data than either the FJC or the WLC, with
new fit parameters. In fact, the resulting model fits high-fo
stretching data out tof ,400 pN without invoking any non-
linear stretch elasticity, and so hasfewer parameters than
models with such nonlinear terms. Alternatively we can p
moteb to an independent fit parameter; then we will find th
an unbiased fit indeed chooses a value for it that is com
rable to the physical monomer length.

Our ‘‘discrete persistent chain’’~DPC! thus models the
polymer as a chain composed ofN segments of lengthb,
whose conformation is again fully described by the colle
tion of orientation vectors$ t̂ i% ~see Fig. 3!. Bend resistance is
taken into account by including an energy penalty at e
link proportional to the square of the angle (Q i ,i 11

5arccost̂ i• t̂ i 11) between two subsequent links. The ener
functional describing this model is thus given by

E DPC@$ t̂ i%#

kBT
52(

i 51

N
f b

kBT
t̂ i• ẑ1 (

i 51

N21
A

2b
~Q i ,i 11!2. ~8!

The partition function for this energy functional is then give
by

Z5F)
i 51

N E
S2

d2 t̂ i Ge2( f b/2kBT) t̂1• ẑH )
i 51

N21

e2Ei ( t̂ i , t̂ i 11)/kBTJ
3e2( f b/2kBT) t̂N• ẑ, ~9!

where

Ei~ t̂ i , t̂ i 11!

kBT
52

f b

2kBT
~ t̂ i1 t̂ i 11!• ẑ1

A

2b
~Q i ,i 11!2 ~10!

andS2 is the two-dimensional unit sphere.
To computeZ, we interpret each integral in Eq.~9! as a

generalized matrix product~among matrices with continuou
indices!, writing @15#

Z5vW •TN21wW . ~11!

In this formulavW andwW are vectors indexed byt̂ , or, in other
words, are functionsv( t̂ ),w( t̂ ). The matrix productTvW is a
new vector, defined by the convolution

FIG. 3. The discrete persistent chain, viewed as a FJC with
additional term in the energy proportional to the square of the p
angleQ between successive segments.
6-3
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C. STORM AND P. C. NELSON PHYSICAL REVIEW E67, 051906 ~2003!
~TvW !~ t̂ i !5E
S2

d2 t̂ jT~ t̂ i , t̂ j !v~ t̂ j !. ~12!

The matrix elements ofT are given by

T~ t̂ i , t̂ j !5e2Ei ( t̂ i , t̂ j )/kBT; ~13!

we will not need the explicit forms ofvW andwW below.
The force-extension relation can be obtained fromZ by

differentiating with respect to the force@see Eqs.~9! and
~10!#:

K z

L tot
L 5S kBT

L tot
D d

d f
ln Z. ~14!

It is here that the transfer matrix formulation can be used
greatly simplify the calculation of the force-extension re
tion, since all that is needed to compute the logarithmic
rivative of Z in the limit of long chains is the largest eigen
value ofT, which we will call lmax:

K z

L tot
L ——→

largeN S kBT

L tot
D d

d f
ln~lmax!

N5S kBT

b D d

d f
ln lmax.

~15!

We will approximatelmax using a variational scheme
Following the line of argument of Ref.@6#, we note that the
leading eigenfunction ofT will reflect the physics of the
problem in the sense that it must be azimuthally symme
and peaked in the direction of the applied force. A suita
one-parameter family of trial eigenfunctionsvW v can therefore
be defined by

vv~ t̂ !5ev t̂• ẑ. ~16!

Under Eq.~12!, thevW v have squared norms

ivW vi25
2p

v
sinh~2v!, ~17!

which allows us to approximatelmax variationally by

lmax* [max
v

y~v![max
v

vW v•T•vW v

ivW vi2
. ~18!

To get some idea of the quality of this variational approa
we can compare its results in the limitb→0 ~the WLC! to
the exact solution of that model. Figure 4 plots the differen
of these force-extension curves and shows that the re
from the variational approximation are nowhere off by mo
than 1%.

Returning to the full DPC model, the Appendix show
that it is possible to expressy(v) in terms of the dimension
less variables

f̃ 5
f b

kBT
, ,̃5

A

b
~19!

as a combination of error functions as follows:
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y~v!5

2A2p3/2v expF22,̃2
~2v1 f̃ !2

8,̃
Gcsch~2v!

A2 ,̃~2v1 f̃ !

3FErfS i

2A2,̃
~ f̃ 14,̃12v!D

2ErfS i

2A2,̃
~ f̃ 24,̃12v!D G . ~20!

This formula is only valid in the parameter regime wherev*
@the locus of the maximum of Eq.~20!# obeys

v* . ,̃2
1

2
f̃ . ~21!

This is the region where the magnitude of the bend stiffn
A is larger than, or at most comparable to, the link lengthb,
which is the relevant regime for our purposes. We maxim
Eq. ~20! numerically to obtainlmax* , from which we can then
compute the force-extension relation by numerical differe
tiation with respect to the force. In the small force limit, w
can do a little better based on the observation that for sm
f̃ , v* is also small. Expanding Eq.~20! to second order inv
and f̃ , we can analytically solve the stationarity conditio
dy/dv50 ~which is now simply a quadratic equation! and
determine the small force entropic elastic behavior of o
DPC model~Fig. 5! to be

K z

L tot
L→ f

kDPC
1O~ f 2!, ~22!

FIG. 4. Comparison between the exact WLC force-extens
solution and the Ritz variational approximation. The deviati

dev(f̃ ) is defined as 100%3@z( f̃ )exact2z( f̃ )var#/z( f̃ )exact, with f̃

the dimensionless force,f̃ 5 f A/kBT. The maximal error induced by
the variational approximation is about 1%. Data for the exact
lution were taken from Ref.@7#.
6-4
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THEORY OF HIGH-FORCE DNA STRETCHING AND . . . PHYSICAL REVIEW E67, 051906 ~2003!
where the effective spring constant for the DPC mode
given by @16#

kDPC5
3

2

kBT

A S 12
b

2AD 1

. ~23!

It is sometimes convenient to reexpress the parametersA and
b of the DPC model in terms ofkDPC andb. We do this by
using Eq.~23!:

A5
b

2
1

3kBT

2kDPC
. ~24!

It is straightforward to add an intrinsic stretch modulus
the calculation outlined above, obtaining the ‘‘Extensib
DPC’’ ~or EDPC! model. We have computed the resultin
force-extension curves and fitted to recent data for ssDN
As mentioned earlier, holdingb fixed to the physical segmen
length of ssDNA (b'0.6 nm) and fittingkDPC andE yields
a slightly better fit to the data than either the FJC or
WLC, with the same number of fit parameters.

B. Fits

Actually parameterb neednot correspond to the physica
interbase separation, but rather to aneffectiveor statistical
segment length analogous to the Kuhn segment length
FJC model. Accordingly, Fig. 6 presents the results of fitt
kDPC, b, and E to the data. Including the points withf
,400 pN yields a good fit, with value of the stretch modul
of around E'4500 pN, more than four times larger tha
even the largest of the previous estimates@13,14,17#. We
interpret this discrepancy by noting that if we holdkDPC

constant while varyingb, the difference between the EFJ

FIG. 5. Least-squares fit~solid line! of the single-stranded DNA
stretching data~closed circles! from Ref.@13# to the extensible FJC
model. Included in the fit are the data up to a force of 100 p
Fitting only those data points yields a Kuhn segment lengthb
51.75 nm and a stretch modulusE583102 pN, reproducing the
typical values as cited for instance in Refs.@13,14,17#. In this graph,
we have extrapolated this fit to the high-force range, to demons
that the parameters as extracted from the low-force data do
represent the full range of data faithfully.
05190
s

.

e

a
g

and EDPC models shows up in the high-force regime, wh
is also sensitive to the choice ofE. Thus neglecting cutoff
effects causes curve fitting to choose a compensating,
physical, value ofE.

The best fit~in terms ofx2) is obtained for a value ofb
'0.17 nm, away from both the EWLC (b50) and EFJC
(b53kBT/k51.7 nm) limits of the model. Even though vis
ibly the difference between the three models in the fit reg
might appear marginal, the improvement inx2 achieved by
the DPC at just over 18% is statistically relevant. Figure
also shows that the EDPC model extrapolates slightly be
to the high-force regime than to either the EFJC or
EWLC.

Previous authors have already noted that the extens
FJC model does not accurately model the high-force d
@13,14#, but have attributed its failure to the onset
nonlinear-elasticity effects. We may expect such effects
become significant when the ratiof /E exceeds, say, 10%
Our large fit value ofE means that we ought to be able
trust our linear-elasticity model out to aroundf 5400 pN,
which is why we used only the data up to this point in our
~Carrying the fit out to still larger values off would raise the
fit value of E still further.!

C. Relation to prior work

Polymer models with both finite cutoff and steric hin
drances to motion are not new. Classical examples incl
the rotation-isomer models, in which succeeding monom
are joined by bonds of fixed polar angle but variable a
muthal angle@3#. Models of this sort have had some succe
in makinga priori predictions of the persistence length of
polymer from its structural information, but obtaining th

.

te
ot

FIG. 6. Fit of the extensible DPC model~solid line! to the
single-strand DNA stretching data~circles! supplied by Rief; see
Ref. @13#. The fit shown was obtained forb50.17 nm, E54.5
3103 pN, L tot53.9 mm, andkDPC5(3/2)(kBT/0.85 nm). In addi-
tion, the dashed and dotted lines show the corresponding best fi
the extensible FJC and WLC, respectively. All fits include the d
points only for forces between 20 pN and 400 pN. Values forx2

were the EFJC, 1.269, for EWLC, 0.600; and for EDPC, 0.490
N51523. We ignore the lowest-force points because of compl
tions induced by hairpins and other secondary structures in
DNA.
6-5
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force-extension relation is mathematically very difficu
Thus, for example, the authors of Ref.@18# obtained only the
first subleading term in the low-force expansion. We are
aware of a prior formulation of a model incorporating t
microscopic physics of both discreteness and stiffness, w
detailed experimental test.

IV. THE OVERSTRETCHING TRANSITION

A. Background

As first observed by Cluzelet el. @10# and Smithet al.
@11#, the stretching of double-stranded DNA is quite differe
from that of ssDNA. The experiments showed that at a fo
of around 65–70 pN the DNA sample suddenly snaps o
~an ‘‘overstretching transition’’!, extending to almost twice
its original contour length before entering a second entro
stretching regime. This second regime clearly represen
DNA configuration quite different from ordinary double
stranded orB DNA, which has been dubbedS DNA. The
transition fromB DNA into S DNA is very sharp, indicating
a high level of cooperativity.

S DNA appears to have a definite helical pitch@19,20#,
consistent with its being a new, double-stranded conform
tion. An alternative view interprets the overstretching tran
tion as force-induced melting~denaturation! of the B DNA
duplex @21,22#. One implication of the latter view is tha
S DNA should have elastic properties similar to those of t
single strands, a point to which we will return later.

Whatever view we take of its structural character, t
sharpness of the overstretching transition is reminiscen
another well-studied structural transition in biopolymers,
helix-coil transition@23#. Inspired by the classic analysis o
Zimm and Bragg, this section will model theB→S transition
by a two-state~Ising! model living on a DPC~the ‘‘Ising-
DPC model’’!. We will make no assumptions about the n
ture of eitherB or S DNA. Both are allowed to have arbi
trary bend and stretch stiffnesses. Our aim is to fit
resulting force-extension curves to the available data an
see whether the values of the elastic constants can help
acterize the stretched state.~The other state is just double
stranded DNA, whose elastic constants are well known.!

B. General Setup

Figure 7 illustrates the model that we will be consideri
in some more detail. We envision a chain consisting ofN
links, connected by hinges that try to align the segments t
join. Each segment carries a discrete variables, which takes
the values61. We will takes511 to mean the segment i
in theB state ands521 for theSstate. The factor by which
a segment elongates when going fromB to Swill be calledz,
i.e., bS5zb ~with z.1). We assign a bend stiffness param
eterA to B DNA, and a differentAS[bzA to S DNA; b is
a dimensionless parameter withbz,1. We also assign a
bend stiffnesshA to a hinge joining aB and anS segment.

We can now write down the full energy functional for o
Ising-DPC model:
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E@$ t̂ i ,s i%#

kBT
52 (

i 51

N21 H a0

2
~s i1s i 11!1g~s is i 1121!

1
f b

2kBT F S 11s i

2
1

12s i

2
z D t̂ i• ẑ

1S 11s i 11

2
1

12s i 11

2
z D t̂ i 11• ẑG

2
A

2b F ~12s i !~12s i 11!

4
b1Us i

2s i 11Uh1
~11s i !~11s i 11!

4 G~Q i ,i 11!2J .

~25!

The first line is the pure-Ising part, with 2a0kBT being the
intrinsic free energy cost of converting a single segm
from B to S and 2gkBT being the energy cost of creating
B→S interface. Note that we ignore a contribution to th
energy functional from the first and last segments. In
long-chain limit this does not affect the outcome of our c
culation.

The partition function for the energy functional~25!,
E@$ t̂ i ,s i%#5( i 51

N21Ei( t̂ i ,s i , t̂ i 11 ,s i 11), is given by

Z5F )
i 51

N21

(
s i561

E
S2

d2 t̂ i G )
i 51

N21

e2Ei ( t̂ i ,s i , t̂ i 11 ,s i 11)/kBT.

~26!

We will again calculateZ with the aid of the transfer matrix
technique@15#, writing Eq. ~26! as

Z5vW •TN21wW , ~27!

with T now being the transfer matrix for our Ising-DP
model, which carries an additional 232 structure due to the
Ising variables. The products are thus defined as

~TvW !s i
~ t̂ i !5 (

s j 561
E

S2
d2 t̂ jTs is j

~ t̂ i , t̂ j !vs j
~ t̂ j !. ~28!

The individual matrix elementsTs is j
are given explicitly by

FIG. 7. Conventions for the Ising-DPC model. We takes5
11 to correspond toB DNA, and s521 to correspond to
S DNA. Each segment ofS DNA is longer thanB DNA by a factor

z. Definitions of t̂ ,u, andQ are the same as before.
6-6
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T1,1~ t̂ i , t̂ i 11!5expF1

2
f̃ ~ t̂ i1 t̂ i 11!• ẑ2

A

b
~12 t̂ i• t̂ i 11!1a0G ,

T1,21~ t̂ i , t̂ i 11!5expF1

2
f̃ ~ t̂ i1z t̂ i 11!• ẑ

2
hA

b
~12 t̂ i• t̂ i 11!22gG ,

T21,1~ t̂ i , t̂ i 11!5expF1

2
f̃ ~z t̂ i1 t̂ i 11!• ẑ

2
hA

b
~12 t̂ i• t̂ i 11!22gG ,

T21,21~ t̂ i , t̂ i 11!5expF1

2
z f̃ ~ t̂ i1 t̂ i 11!• ẑ

2
bA

b
~12 t̂ i• t̂ i 11!2a0G ,

where againf̃ [ f b/kBT.
Once again we approximate the largest eigenvalue of

transfer matrixT using a variational approach, choosing o
trial eigenfunctions to possess azimuthal symmetry and to
peaked in the direction of forceẑ. This time, however, we
need a three-parameter family of trial functions:

vv1 ,v21 ,w~ t̂ !5S S v1

sinh~2v1! D
1/2

ev1 t̂• ẑcosw

S v21

sinh~2v21! D
1/2

ev21 t̂• ẑsinw
D ,

~29!

chosen such that their squared norm is independent o
parameters,

ivW v1 ,v21 ,wi252p. ~30!

Equation~29! shows that once again thev gives the degree
of alignment of the monomers~how forward-peaked thei
probability distribution is!, whereasw describes the relative
probability of a monomer to be in the two states. The var
tional estimate for the maximal eigenvalue is now given

lmax* [ max
v1 ,v21 ,w

y~v,w![ max
v1 ,v21 ,w

vW v1 ,v21 ,w•TvW v1 ,v21 ,w

ivW v1 ,v21 ,wi2
.

~31!

The maximization overw can be done analytically: defin
ing the 232 matrix T̃(v1 ,v21) by

vW v1 ,v21 ,wTvW v1 ,v21 ,w5~cosw,sinw!•T̃~v1 ,v21!•S cosw

sinw
D ,

~32!

or equivalently specifying its entries
05190
e
r
e

all

-

T̃s is j
~vs i

,vs j
!5E

S2
d2 t̂ iE

S2
d2 t̂ jS vs i

sinh~2vs i
!D 1/2

3evs i
t̂ i• ẑTs is j

~ t̂ i , t̂ j !

3S vs j

sinh~2vs j
!D 1/2

evs j
t̂ j • ẑ, ~33!

it is easy to show that

lmax* 5 max
v1 ,v21

ỹ~v1 ,v21!

ivW v1 ,v21 ,wi2
, ~34!

where ỹ(v1 ,v21) is the maximal eigenvalue o
T̃(v1 ,v21). The following section will calculate this eigen
value in a continuum approximation toT̃(v1 ,v21), illustrat-
ing the procedure by considering in some detail the ma
elementT̃1,1(v1 ,v21). The other matrix elements can b
obtained analogously. Writing out the integrals explicitly, w
have

T̃1,1~v1!5
v1ea02A/b

sinh~2v1!
E

S2
d2 t̂ ie

ât̂ i• ẑ

3E
S2

d2 t̂ i 11@e(âẑ1[A/b] t̂ i )• t̂ i 11#, ~35!

where we have introducedâ[v11 f̃ /2. Condensing notation
even further, we definem25â21(A/b)212â(A/b) t̂ i• ẑ,
which allows us to write

T̃1,1~v1!5~2p!2
v1ea02A/b

sinh~2v1!

3E
uA/b2âu

A/b1â bdm

âA
eb/2A[m22â22(A/b)2]@em2e2m#.

~36!

C. Continuum limit

We could now proceed to evaluate the force-extens
relation of the Ising-DPC model, by generalizing Sec. III.
simplify the calculations, however, we will first pass to
continuum limit. To justify this step, note that Fig. 6 show
that the continuum~WLC! approximation gives an excellen
account of single-stranded DNA stretching out to forces
yond those probed in overstretching experiments~about 90
pN!. As mentioned earlier, the continuum approximation
also quite good for double-stranded DNA, because the
ter’s persistence length is much longer than its monom
size.

In the continuum limit,b is sent to zero holdingL→t
fixed; henceN→`. The bookkeeping is more manageab
after a shift inm:
6-7
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x[m2
A

b
. ~37!

Equation~36! then reduces to

T̃1,1~v1!5
v1ea0

sinh~2v1!

~2p!2b

âA
E

2â

1â
dx

3expF b

2A
x212x2

â2b

2A
G

'
v1ea0

sinh~2v1!

~2p!2b

âA
E

2â

1â
dxe2xS 11

x2b

2A De2â2b/2A.

~38!

The last integral can be worked out exactly, and expand
the result to second order inb we end up with

A

2pb

1

ivW v1 ,v21 ,wi2
T̃1,1~v1!

5ea0F11bS f

kBT
2

v1

2AD S coth~2v1!2
1

2v1
D G .

~39!

In a similar manner, we can obtain the following expressio
for the other matrix elements:

A

2pb

1

ivW v1 ,v21 ,wi2
T̃21,21~v21!

5b1e2a0F11bS z f

kBT
2

v21

2bAD S coth~2v21!2
1

2v21
D G ,

A

2pb

1

ivW v1 ,v21 ,wi2
T̃1,21~v1 ,v21!

5
e22g

h S v1v21

sinh~2v1!sinh~2v21! D
1/2S 2 sinh~v11v21!

v11v21
D .

~40!

To obtain a nontrivial continuum limit we must now
specify how parametersA, a0, and g depend onb as b
→0. It is straightforward to show that the choices

a052 1
2 ln b1bā, g52 1

2 ln~ ḡb! ~41!

work, where we holdA, ā, b, and ḡ fixed asb→0. With
these choices, the matrix (1/ivW v1 ,v21 ,wi2)T̃(v1 ,v21) takes
the form

1

ivW v1 ,v21 ,wi2
T̃~v1 ,v21!5

2pb

AAb
F 11bS P Q

Q RD G ,
~42!
05190
g

s

with

P5ā1S f

kBT
2

v1

2AD S coth~2v1!2
1

2v1
D ,

R52ā1S z f

kBT
2

v21

2Ab D S coth~2v21!2
1

2v21
D ,

Q5
ḡAb

h S v1v21

sinh~2v1!sinh~2v21! D
1/2S 2 sinh~v11v21!

v11v21
D .

~43!

Note that the prefactor 2pb/AAb in Eq. ~42! does not con-
tribute to the force-extension result Eq.~15!, since it does not
depend on the force. In terms of the individual matrix e
tries, the quantity to be maximized now reads@see Eq.~31!#

ln ỹ~v1 ,v21!5
b

2
~P1R1A~P2R!214Q 2!. ~44!

Writing V[b1ln lmax* 5b1maxvln ỹ(v1,v21), the force exten-
sion in the continuum limit is finally given by

K z

L tot,b
L 5kBT

dV

d f
. ~45!

We evaluateV by numerically maximizing Eq.~44!.
So far, we have not included stretch moduli for theB and

S DNA. This is easily implemented to first order inf /E by
replacingf with f (11 f /2ES,B) in the matrix elements for the
two states, respectively@Eq. ~29!#. This procedure yields the
oretical force-extension curves similar to those plotted
Figs. 8 and 9.

FIG. 8. Least-squares fit of the Ising-DPC model to an ov
stretching dataset~48.5 kbp l DNA construct; buffer 500 mM
NaCl, 20 mM Tris,pH 8). Data were supplied by Bustamante a
Smith. The data shown include successive passes through the
stretching transition, in both directions; the pulling rate was lo
enough to eliminate any significant hysteresis. Fit parametersA

543.75 nm, ā55.45 nm21, b50.16, Q50.13 nm21, z51.76,
E(B)51.23103 pN, andE(S)51.03104 pN. x259.22 atN5825;
points with 1.11,^z/L&,1.55 were excluded from the fit.
6-8
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In summary, our model contains the following seven p
rameters. 2ākBT is the free energy per unit length require
to flip B DNA into the S state, and is measured in J/nm.Q
measures the cooperativity of the transition and has u
1/nm. A is the bend stiffness parameter ofB DNA, with
units nm. The dimensionless parameterb is the ratio of theB
andS DNA bend stiffnesses.EB andES are the stretch stiff-
nesses ofB andS DNA, and are measured in pN. Finally,z
is the dimensionless elongation factor associated with thB
→S transition.

D. Discussion of fits

Our strategy is now as follows: first, we fit the part of th
stretching curve well below 65 pN to a one-state, continu
model ~i.e., to the EWLC!, determining its effective spring
constant and stretch modulus. The values thus obtained
used as initial guesses in a fit of the full curve to the Isin
DPC model. To improve convergence, we eliminate two
the parameters as follows. First, we can get an accurate v
for EB from the low force data, so we hold it fixed to th
value during the full fit. Second, as described in Sec. III
can work out the low-force limit analytically, and from th
obtain the effective spring constantk as a function of the
model parameters. We invert this relation to getA as a func-
tion of k and other parameters. We substitute thisA, holding
k fixed to the value obtained by fitting the low-force data
an EWLC. We then fit the remaining five parameters (b, Q,
ā, ES, andz) to the dataset@24#.

The results of the fits obtained in this manner are c
lected in Figs. 8 and 9. Our Ising-DPC hybrid model fits t
experimental data rather well, but with so many fit para
eters, one may ask whether the model actually makes
falsifiable predictions. To answer this question, we note t
the data below the transition suffice to fixA andEB as usual,

FIG. 9. Least-squares fit of the Ising-DPC model to an ov
stretching dataset obtained from a 15.1-mm sample of EMBL3l
DNA in phosphate-buffered solution~100 mM; 80 mM Na1 and
0.01% Tween! from Ref. @10#. Data were supplied by Marko

Fit parameters:kDPC5(3kBT/2)(1/52.63 nm), ā054.82 nm1, b
50.08, Q50.23, z51.71, EB57.33102 pN, and ES53
3104 pN. x252.15 atN5339, points with 1.15,^z/L&,1.5 were
excluded from the fit. For further discussion see Sec. IV D.
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roughly speaking from the curvature and slope of the cu
below the transition. Similarly, the data above the transit
fix AS5zbA and ES. The vertical jump in the curve at th
transition fixesz. The horizontal location of the jump fixe
ā, and the steepness of the transition at its midpoint fixes
cooperativityQ @25#. Thus all of the model’s parameters a
fixed by specific features of the data. Two additional, ind
pendent features of the data now remain, namely, the rou
ing of the curve at the start and at the end of the transiti
Our model predicts these features fairly successfully.

Some common features emerging from the two fits
serve comment. First, both fits reproduce the known val
for the effective persistence length ofB DNA of around
50 nm and its stretch modulus of about 1000 pN. Second,
can read off the bend stiffness ofS DNA from our fit as
AS5bzA512.32 nm~data from Fig. 8! or 7.2 nm~data from
Fig. 9!. If S DNA consisted of two unbound, single strand
we might have expectedAS to be twice as large as the valu
Ass'0.85 nm obtained by fitting the single-strand stretchi
data with the continuum EDPC model~see Fig. 6 or Refs.
@11,14#!. On the contrary, we find thatthe bend stiffness o
S DNA is intermediate between that of B DNA and two sin
strands@26#. This conclusion fits qualitatively with some o
the structural models ofS DNA, in which the bases remain
paired but are not stacked as inB DNA. ~Of course it is
possible that under different experimental conditions theB
→S transition may be skipped altogether, with theB form
passing directly to melted DNA.!

Our third conclusion is thatthe stretch modulus of S DNA
is substantially higher than that of B DNA. This conclusion
is again consistent with the view ofS DNA as stabilized
mainly by its backbones, which are much straighter than
B DNA; the contour length ofB DNA is instead determined
by weaker, base-stacking interactions.

E. Relation to prior work

Several authors have also studied the entropic elasticit
two-state chains. As soon as the overstretching transition
discovered, Cluzel proposed a pure Ising model by anal
to the helix-coil transition@28#. Others then introduced en
tropic elasticity, but required that both states have the sa
bending stiffness asB DNA @29,30# or took one of the two
states to be infinitely stiff@31#, or to be a FJC@21,22#. The
analysis of Cizeau and Viovy@32# is essentially a mean-field
approximation to the model we study here; in addition, t
authors did not quote any value for theS DNA bend stiff-
ness, presumably because the experimental data availab
that time did not permit such a determination. To the bes
our knowledge, we believe our Ising-DPC model to be t
first consistent formulation incorporating the coexistence
two different states with arbitrary elastic constants. Our
proach also is calculationally more straightforward th
some, and minimal in the sense that no unknown poten
function needs to be chosen~as was the case in Ref.@29#!.

V. STATISTICAL ANALYSIS OF THE B\S TRANSITION

Using standard techniques from statistical physics,
now look at theB→S transition in some more detail. From

-
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the expressions for the Ising-DPC hybrid energy functio
~25! and the partition function~26!, we read off that the
average ‘‘spin’’s can be obtained as

^s&5
1

N

]

]a0
ln Z5

]

]ā
V, ~46!

so that, for instance, the relative population of theSstate~or
equivalently the probability to find an arbitrary segment
the S state!, P(S), is given by

P~S!5
1

2
~12^s&!. ~47!

Similarly, we can take the derivative of Eq.~26! with respect
to g to determine the average nearest neighbor spin
relator

^s is i 11&5
1

N

]

]g
ln Z115122bQ ]

]QV. ~48!

The quantity^s is i 11& can be interpreted as the fraction
nearest neighbor pairs in the same state minus the fractio
pairs in opposite states. Consequently, the probability of h
ing a spin flip at a given site isP(flip) 5 1

2 (12^s is i 11&) and
the averagenumber of S1B domain pairs is Npairs
5(N/2)P(flip). A heuristic measure of the typicalS domain
size is then@33#

Ldom5
L

Npairs
P~S!5

2b~12^s&!

12^s is i 11&
5S 12

]V

]ā
D Y S Q]V

]QD .

~49!

We wish to highlight two points from this discussio
First, Fig. 10 shows the fraction in theS state,P(S), as a
function of the applied force, and we can see the charac
istic sigmoidal behavior as the system is led through
transition. As the inset demonstrates, a small fraction is
theSstate even at zero force. This fraction initially decrea
on increasing the stretching force@34#. Figure 11 plots the
typical S-domain lengthLdom versus applied stretching force
It demonstrates how even well above the transition thS
state on average does not persist for long; at the high en
the physically accessible range of forces,Sdomains measure
about 160 nm. This figure has some significance as it ill
trates an important point about the role of nicks in the
periments. Empirically, when working withl-phage DNA
only around 5% of all samples are completely un-nick
@20#. Since thel-phage genome is about 48 Kbp in lengt
we can roughly estimate the probability for an arbitrary ba
pair to be un-nicked isP(not)5(0.05)1/48 000, and conse-
quently the probability that a given pairis nicked is
P(nick)512P(not)'6.231025. Given the total length of
l-phage DNA, this implies we expect there to be an aver
of 6.2310253483103'3 nicks per sample, correspondin
to an average distance between nicks of the order of 5mm,
considerably larger than the typicalS-domain size. This ob-
servation bears on the question of the character of theSstate
of DNA @21#: even if S DNA were a denatured state, th
05190
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existence of nicks would not necessarily cause it to su
irreversible changes in its elasticity as tracts spanning
nicks fall off during overstretching.

Second, different groups have not agreed on whether
stretching curves of the double-stranded and single-stran
DNA coincide at forces above the former’s overstretchi
transition@20,35#. We wish to point out that even ifS DNA
were a denatured state, we still would not necessarily exp
these two curves to coincide. Figure 10 shows that the c
version fromB to S form continues well beyond the appare
end of the force plateau, continuing to affect the forc
extension curve. To determine whetherS DNA is elastically
similar toB DNA, one must disentangle the two states’ co

FIG. 10. P(S), the relative population of theS state, vs the
applied stretching force, as calculated from Eq.~47!. The inset
shows that theS state has a nonzero population even at zero for
Parameter values are those from Fig. 9.

FIG. 11. The typical length of anS domainLdom vs the stretch-
ing force, calculated using Eq.~49!. Parameter values are those
Fig. 9. The asymptotic slope of the linear increase is 3.15 nm pN21.
Note, that even at 120 pN, the typical size of anS domain is only
160 nm, or about 480 basepairs.
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THEORY OF HIGH-FORCE DNA STRETCHING AND . . . PHYSICAL REVIEW E67, 051906 ~2003!
tributions to the stretching curve by globally fitting to a tw
state model, as we have done.

VI. CONCLUSION

Section I summarizes our conclusions. Here we lis
number of interesting modifications to the model as poss
extensions to this work.

While the variational approximation used here has pro
to be adequate, still it is straightforward to replace it by t
eigenfunction-expansion technique, which can be carrie
arbitrary accuracy@6#. Similarly, the methods of Sec. III ca
be used to work in the full, discrete DPC model instead
the continuum approximation used in Sec. IV C. It is a
straightforward to retain finite-length effects by keeping t
subleading eigenvalue of the transfer matrix.

Real DNA is not a homogeneous rod. The methods
quenched disorder can be used to introduce seque
dependent contributions to the transition free energya and
the bend stiffnessA @36#. Finally, we believe that the meth
ods of this paper can be adapted to the study of the stretc
of individual polypeptide and polysaccharide molecules@37#.
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APPENDIX: DERIVATION OF y„v…, THE VARIATIONAL
APPROXIMATION TO lmax

In this appendix we will derive an expression fory(v) as
defined in Eq.~18!, which reads

ivW vi2y~v![vW v•TvW v . ~A1!

We will assume that anglesQ i ,i 11 between successiv
links are small, which allows us to replace (Q i ,i 11)2

5arccos2( t̂ i• t̂ i 11) by its small-angle approximation 2(1
2 t̂ i• t̂ i 11). The family of trial functions we use is param
etrized by the single parameterv; vv( t̂ )[ev t̂• ẑ. Further-
more, we will ignore the two contributions from the begi
ning and the end of the chain@appearing for instance in Eq
~9!#, as they do not contribute to our result in the long-ch
limit anyway. Thus the energy functional is

E@$ t̂ i%#

kBT
52 (

i 51

N21 H f b

2kBT
~ t̂ i• ẑ1 t̂ i 11• ẑ!2

A

b
~12 t̂ i• t̂ i 11!J .

~A2!

According to Eq.~13!, the matrix elements ofT are given by
05190
a
le

d
e
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f
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n

T~ t̂ i , t̂ i 11!5expF2 ,̃1
f̃

2
~ t̂ i1 t̂ i 11!• ẑ1 ,̃ t̂ i• t̂ i 11G ,

~A3!

where we use the dimensionless forcef̃ [ f b/kBT and and
ratio of characteristic lengths,̃5A/b. Working out the sca-
lar products in Eq.~A1! yields

ivW vi2y~v!5e2 ,̃E
S2

d2 t̂ iE
S2

d2 t̂ i 11

3expF S f̃

2
1v D ~ t̂ i1 t̂ i 11!• ẑ1 ,̃ t̂ i• t̂ i 11G .

~A4!

Defining an auxiliary vector

GW [S f̃

2
1v D ẑ1 ,̃ t̂ i[G ĝ, ~A5!

with

G[iGW i5S F f̃

2
1vG2

1 ,̃21 ,̃~ f̃ 12v! t̂ i• ẑD 1/2

, ~A6!

simplifies Eq.~A4!, which now reads

ivW vi2y~v!5e2 ,̃E
S2

d2 t̂ iexpF S f̃

2
1v D t̂ i• ẑG

3E
S2

d2 t̂ i 11exp@G ĝ• t̂ i 11#. ~A7!

Transforming to spherical polar coordinates withĝ as the
polar axis, the second integral can be worked out to g
4p/G sinh(G). Since the integral overt̂ i involves only terms
containing t̂ i• ẑ, the integration over the azimuthal ang
simply yields 2p. For the polar angle, we change the int
gration variable toG ~which is a monotonic function of
t̂ i• ẑ), bringing it to the following form:

ivW vi2y~v!5
16p2

,̃~ f̃ 12v!
expF2

3

2
,̃2

1

2,̃
S f̃

2
1v D 2G

3E
u,̃2( f̃ /21v)u

,̃1( f̃ /21v)
dG exp@G2/2,̃#sinh~G!.

~A8!

The integral overG can be performed analytically, and
most conveniently expressed in terms of error functions
6-11
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E
u,̃2( f̃ /21v)u

,̃1( f̃ /21v)
dG exp@G2/2,̃#sinh~G!

5
e2 ,̃/2A2p ,̃

2A2
FErfS i

2A2,̃
~ f̃ 14,̃12v!D

2ErfS i

2A2,̃
~ f̃ 24,̃12v!D G . ~A9!

This expression is valid only in the regime where,̃. f̃ /2
1v, which is satisfied as long as one choosesA.b. Note
that the error functions have imaginary arguments. Using
normalization quoted in Eq.~17! we can now expressy(v)
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